Search results for "polyammonium-polycarboxylate interactions"

showing 2 items of 2 documents

Speciation of chitosan with low and high molecular weight carboxylates in aqueous solution

2009

Quantitative data on the speciation of chitosan (310 kDa) with low and high molecular weight carboxylates in aqueous solution are reported. The following carboxylic ligands were considered: monocarboxylate (butyrate); dicarboxylates (malonate, succinate, azelate); tricarboxylate (1,2,3-propa- netricarboxylate); tetracarboxylate (1,2,3,4-butanetetracarboxylate); polyacrylates (2.0 and 20 kDa); polymethacrylate (5.4 kDa). The investigation was performed by potentiometry at t 1/4 25 C, at low ionic strength (without addition of supporting electrolyte) and at I 1/4 0:15 mol L 1 (NaCl). For all the systems the formation of (chitosan)LHi species was found (L 1/4 carboxylic ligand; i 1/4 1 to 4 de…

Chemical Health and SafetyAqueous solutionpolyammonium-polycarboxylate interactionsSupporting electrolyteLigandHealth Toxicology and MutagenesisInorganic chemistrychitosan; polyammonium-polycarboxylate interactions; Chemical speciation; sequestration; effect of ionic strength on sequestrationsequestrationToxicologyTricarboxylateMedicinal chemistrychitosan polyammonium polycarboxylate speciation sequestration ionic strenght.Chitosanchemistry.chemical_compoundMalonatechemistryIonic strengthChemical speciationSettore CHIM/01 - Chimica Analiticaeffect of ionic strength on sequestrationCarboxylatechitosanChemical Speciation & Bioavailability
researchProduct

Sequestration of biogenic amines by alginic and fulvic acids.

2006

The interaction of natural (alginic and fulvic acids) and synthetic (polyacrylic acid 2.0 kDa) polyelectrolytes with some protonated polyamines [diamines: ethylendiamine, 1,4-diaminobutane (or putrescine), 1,5-diaminopentane (or cadaverine); triamines: N-(3-aminopropyl)-1,4diaminobutane (or spermidine), diethylenetriamine; tetramine: N.N'-bis(3-aminopropyl)-1,4-diaminobutane (or spermine); pentamine: tetraethylene-pentamine; hexamine: pentaethylenehexamine] was studied at T=25 degrees C by potentiometry and calorimetry. Measurements were performed without supporting electrolyte, in order to avoid interference, and results were reported at I=0 mol L(-1). For all the systems, the formation of…

polyammonium-polycarboxylate interactionsAlginatesPolymersBiogenic aminesInorganic chemistryFulvic acidCarboxylic AcidsBiophysicsProtonationCalorimetryBiochemistryMedicinal chemistryElectrolyteschemistry.chemical_compoundbiogenic amineGlucuronic AcidPolyaminesBenzopyransAlginic acidPolyacrylic acidCadaverineChemistryHexuronic AcidsOrganic ChemistryPolyacrylic acidPentaminesequestrationPolyelectrolytesPolyelectrolyteQuaternary Ammonium CompoundsBiogenic amines; Fulvic acid; Alginic acid; Polyacrylic acid; sequestrationModels ChemicalDiethylenetriamineThermodynamicsAmine gas treatingProtonsMathematics
researchProduct